Automated detection of inaccurate and imprecise transitions in peptide quantification by multiple reaction monitoring mass spectrometry.
نویسندگان
چکیده
BACKGROUND Multiple reaction monitoring mass spectrometry (MRM-MS) of peptides with stable isotope-labeled internal standards (SISs) is increasingly being used to develop quantitative assays for proteins in complex biological matrices. These assays can be highly precise and quantitative, but the frequent occurrence of interferences requires that MRM-MS data be manually reviewed, a time-intensive process subject to human error. We developed an algorithm that identifies inaccurate transition data based on the presence of interfering signal or inconsistent recovery among replicate samples. METHODS The algorithm objectively evaluates MRM-MS data with 2 orthogonal approaches. First, it compares the relative product ion intensities of the analyte peptide to those of the SIS peptide and uses a t-test to determine if they are significantly different. A CV is then calculated from the ratio of the analyte peak area to the SIS peak area from the sample replicates. RESULTS The algorithm identified problematic transitions and achieved accuracies of 94%-100%, with a sensitivity and specificity of 83%-100% for correct identification of errant transitions. The algorithm was robust when challenged with multiple types of interferences and problematic transitions. CONCLUSIONS This algorithm for automated detection of inaccurate and imprecise transitions (AuDIT) in MRM-MS data reduces the time required for manual and subjective inspection of data, improves the overall accuracy of data analysis, and is easily implemented into the standard data-analysis work flow. AuDIT currently works with results exported from MRM-MS data-processing software packages and may be implemented as an analysis tool within such software.
منابع مشابه
Liquid chromatography–tandem mass spectrometry (LC-MS) method for the assignment of enalapril and enalaprilat in human plasma
A rapid and sensitive liquid chromatography–tandem mass spectrometry (LC-MS) method was developed for the determination of enalapril and enalaprilat in human plasma. Detection of analytes was achieved by tandem mass spectrometry with electrospray ionization (ESI) interface in positive ion mode which was operated under the multiple-reaction monitoring mode. Sample pretreatment was involved...
متن کاملQuantification of Melittin in Iranian Honey Bee (Apis mellifera meda) Venom by Liquid Chromatography-electrospray Ionization-ion Trap Tandem Mass Spectrometry (LC-ESI-IT-MS/MS)
The current research aimed to quantify melittin (MEL) in Iranian honey bee (Apis mellifera meda) venom. To this end, a liquid chromatography-electrospray ionization-ion trap tandem mass spectrometry (LC-ESI-IT-MS/MS) approach was employed. Melittin is the main toxic peptide of honey bee venom with various biological and pharmacological activities. It was extracted with...
متن کاملMethod validation of clonidine hydrochloride in human plasma by LC-MS technique
A simple and sensitive high performance liquid chromatography-electrospray ionization mass spectrometry method has been evaluated for the assignment of clonidine hydrochloride in human plasma. The mobile phase composed of acetonitrile–water 60:40 (v/v), and 0.2% formic acid 20 µL of sample was chromatographically analyzed using a repacked ZORBAX-XDB-ODS C18 column (2.1 mm×30 m...
متن کاملAn automated and multiplexed method for high throughput peptide immunoaffinity enrichment and multiple reaction monitoring mass spectrometry-based quantification of protein biomarkers.
There is an urgent need for quantitative assays in verifying and validating the large numbers of protein biomarker candidates produced in modern "-omics" experiments. Stable isotope standards with capture by anti-peptide antibodies (SISCAPA) has shown tremendous potential to meet this need by combining peptide immunoaffinity enrichment with quantitative mass spectrometry. In this study, we desc...
متن کاملTowards reproducible MRM based biomarker discovery using dried blood spots
There is an increasing interest in the use of dried blood spot (DBS) sampling and multiple reaction monitoring in proteomics. Although several groups have explored the utility of DBS by focusing on protein detection, the reproducibility of the approach and whether it can be used for biomarker discovery in high throughput studies is yet to be determined. We assessed the reproducibility of multip...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical chemistry
دوره 56 2 شماره
صفحات -
تاریخ انتشار 2010